
Chapter 3

Supervised machine
learning (II)

In the previous chapter, we have covered major supervised machine learn-
ing methods. In this chapter, we will discuss several fundamental machine
learning concepts in real applications. Chapter 3.1 focuses on feature se-
lection problems. Chapter 3.2 discusses issues related to performance
evaluations. The cross validation technique when no external validation
data are available and various performance evaluation criteria are ad-
dressed. In Chapter 3.3, the concept of overfitting and underfitting is
introduced. Chapter 3.4 discusses the issue of choosing the most suit-
able machine learning method(s) in a given application. Finally, Chapter
3.5 discusses common mistakes and further issues in machine learning of
genomic data.

3.1 Feature selection

In genomic data analysis, thousands of genes (features) are assessed for
each sample. Since large portion of the genes provide noisy information
irrelevant to the class label, adequate filtering procedures to eliminate
such irrelevant genes are often desirable to improve the prediction per-
formance.
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3.1.1 filtering methods

Example of filtering:

Figure 3.1 shows a heatmap of correlatioin matrix between any pair
of samples in a leukemia microarray data set (from “ALL” package in
Bioconductor). When all 12,625 genes are used, the heatmap does not
show any clear pattern. We then filter out genes that have standard de-
viation (across samples) smaller than 1. In the remaining 379 genes, the
heatmap of correlation matrix shows clearer with-group patterns (black:
ALL1/AF4, red: BCR/ABL, green: E2A/PBX1, blue: NEG). Particu-
larly, in the NEG group there seems to be two clear subclusters. Further
investigation finds that the two subclusters belong to NEG B-cell and
NEG T-cell (Figure 3.2). See exercise 1 for steps to repeat this analysis.
This example demonstrates the need to filter out irrelevant genes (i.e.
genes do not highly fluctuate in this case) and its power to improve the
analysis.
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Figure 3.1: Heatmap of the correlatioin matrix of samples in the ALL
package using all genes (12,625 genes) without any filtering.

In supervised machine learning of genomic data, such a simple gene-
by-gene filtering is very useful. One common practice is to pick the top
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Figure 3.2: Heatmap of the correlatioin matrix of samples in the ALL
package using 379 genes after filtering out weak-fluctuating genes.

N genes (features) that generate the highest absolute t-statistics (or F-
statistics or certain signal-to-noise ratio) and/or the largest fold change.
High absolute statistic guarantees statistical significance (i.e small within-
group variation and large between-group variation) while fold change re-
quires biological significance (e.g. more than 20% fold change). The latter
requirement is sometimes important since it happens very often that a
discriminant gene generate a very small p-value but has only small, say
2%, fold change. This is often not biologically interesting. The number of
top genes N is a parameter. It is usually determined by cross-validation.

In addition to t-statistics, moderate t-statistics have been proposed:
?? (add more details later). It can avoid a high t-statistic value due
to very small variance, which often is a result of artifact and does not
contribue much generalizable classification power.
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3.1.2 wrapper methods

The filtering method is computationally fast and easy to interpret. It,
however, has several drawbacks. When a group of highly correlated genes
with very high discriminant power exists, this set of genes may occupy
the top gene list and the redundancy forces the algorithm to ignore other
preditive genes. Secondly, some genes may jointly interact to provide
high prediction power while individual consideration of each gene pro-
duces low prediction power. Thirdly, the filtering method is independent
of the classification method used for model construction. Thus the fea-
ture selection may not choose the optimal gene set based on the special
characteristics of the classification method.

– add a two-gene example figure where individual gene has small pre-
dictive power but jointly have high predictive power. Create a simulation
(50 highly correlated genes of pattern 1 and 50 highly correlated of pat-
tern 2) for exercise.

Wrapper methods consider any subset of gene selection in the algo-
rithm. The problem is very similar to variable selection in linear regres-
sion. Popular algorithms includes forward selection, backward selection
or their combinations. The Recurrsive Feature Elimination (RFE) (add
citation) is a famous backward selection method applied in microarray
analysis for SVM and LDA. The method starts from the full gene set. In
each iteration, the gene with the smallest (or, say the bottom five small-
est, to speed up the computation) estimated absolute weight in SVM or
LDA is eliminated. The elimination is recurrsively performed until N
genes is left. Again, the estimation of N is from cross validation.

3.1.3 embedded methods

Embeded methods jointly or simultaneously train the classifier and select
the feature subset. Nearest Shrunken centroids, CART, random forest,
are other tree-based classifiers belong to this category. Intuitively, em-
bedded methods are more desirable.
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3.2 Assessing and comparing classification
algorithms

3.2.1 Generalizability and cross-validation

One important consideration for supervised machine learning is the “gen-
eralizability” of the classifier. In the situation that a training data set
and a test (validation) data set are available, the classifier should be con-
structed in training data without including any information in the test
data. The classifier can then be applied to the test data set to assess the
classification accuracy.

In many situations, we are given only one genomic data set for su-
pervised machine learning. A “cross validation” scheme is often used to
assess an unbiased prediction accuracy. The whole samples are split into
V equal portions. In each iteration, one portion of the data is left out as
the test data set. The remaining V − 1 portions are used as the train-
ing data to constructe a classifier. The classifier is then applied to the
left-out test portion to assess the prediction accuracy. The procedure is
repeated for V times untill all V portions are evaluated by the cross val-
idation. Each sample is evaluated exactly once and the total prediction
accuracy can be calculated. In the literature, V = 5 or 10 are often used.
Another popular selection is when V = S. This is called leave-one-out
cross validation (LOOCV) where only one sample is left out as test data
in each iteration.

3.2.2 Performance assessment measures

2X2 contingency table (confusion matrix) TP, TN, FP, FN, sensitivity
(recall rate)=TP/(TP+FN), specificity=TN/(TN+FP), positive predic-
tive value (precision)=TP/(TP+FP), negative predictive value=TN/(TN+FN),
false discovery rate (FDR)=FP/(TP+FP) (Note: The term FDR is usu-
ally used for multiple testing, not for evaluating prediction accuracy. In
that case the definition of FDR is by taking expected value E[FP/(TP+FP)]).

Table 3.1: 2X2 contigency table.
actual value (p) actual value (n)

predicted (p) true positive (TP) false positive (FP)
predicted (n) false negative (FN) true negative (TN)

ROC curve and AUC: (1) definition of ROC curve (2) AUC is used
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to summarize the sensitivity and specificity trade-off.

Genomic example: Simulate two classes of 2-D data. Use LDA to
separate. Show trade-off of sensitivity and specificity.

Problem of ROC curve: (1) instability from small sample size and
machine learning methods that causes difficulty to obtain an accurate
estimate of AUC (2) Partial AUC may be preferred in specific situations
(e.g. in population screening test, focus on region of low false positive
rate)

3.3 Over-fitting and under-fitting

over-fitting or under-fitting from allowed classifier searching
space.

Simulation: True model linear separation, use LDA (best); True model
linear separation, use QDA (over-fitting); True model quadratic separa-
tion, use LDA (under-fitting); True model quadratic separation, use QDA
(best)

overfitting from using test data in model construction
Show an exercise of gene filtering using both training and testing data.

3.4 How to choose a classifier?

There are so many machine learning methods available. Each method has
its own pros and cons. Some methods have stronger data assumtptions or
higher limitation on the data structure (e.g. logistic regression requires
that the number of features should be smaller than sample size) that
limit their use in wider applications. Some methods have found wider
successful applications than the others (e.g. support vector machines and
random forest). In general, the choice of the best classifier highly depends
on the underlying data structure and the biological goal. There have
been several comparative studies for comparing performance of different
machine learning methods in microarray data. Below are three common
considerations in genomic applications:

(1) accuracy focus on total accuracy, sensitivity, specificity or Youden
index=sensitivity+specificity-1

(2) simplicity and interpretability of a classifier
(compare CART, LDA, ANN)
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Nearest shrunken centroids (PAM)

(3) hard classification versue classification with assignment probabil-
ity

3.5 Common mistakes and further notes

3.5.1 Misintepretation of accuracy

Interpretation: experimental population and empirical population

3.5.2 Use testing data information in classifier con-
struction

Example: Below is an example that illustrates the importance of general-
izability and cross-validation. It is a common mistake to perform feature
selection that contains information from test data.

3.5.3 Determining better performance of a new method

Develop a new method, test on several data sets, find that its cross-
validation accuracy is better than existing methods and claim that it is
better.
small sample size problem → inaccurate accuracy estimation

3.5.4 Choose the minimal-error classifier among many
classifiers

Note: problem of testing many classifiers and choose the best

3.5.5 Difference between DE gene detection and clas-
sification

– DE gene detection identifies “all” genes that are differentially expressed
across conditions. False discovery rate is usually the concern. – Classi-
fication analysis focuses on constructing a good prediction model that is
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generalizable to future samples. The prediction accuracy (sensitivity and
specificity) is the concern. The analysis usually also generate key gene
features that participate in the model construction. However, not all
genes with good prediction power are obtained. For example, if several
genes are highly correlated and all have good prediction power, it is pos-
sible that only one of them are used in the prediction model construction.

Exercise:

1. Repeat the filtering analysis of ALL data
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